科目：機率論
考試時間： 100 分鐘

系所：
統計學研究所
本科原始成績：100分

1．Let $\left\{X_{n}, n \geq 1\right\}$ and $\left\{Y_{n}, n \geq 1\right\}$ be sequences of random variables and X and Y be random variables．Please indicate whether the following statements are true or false．If a statement is false，explain why．（30\％）
（a）If $X_{n} \rightarrow X$ in probability and $Y_{n} \rightarrow Y$ in probability，then $X_{n}+Y_{n} \rightarrow X+Y$ in probability．
（b）If $X_{n} \rightarrow X$ in distribution and $Y_{n} \rightarrow Y$ in distribution，then $X_{n}+Y_{n} \rightarrow X+Y$ in distribution．
（c）If $E\left|X_{n}-X\right| \rightarrow 0$ as $n \rightarrow \infty$ ，then $X_{n} \rightarrow X$ in probability．
（d）If $X_{n} \rightarrow X$ in probability，then $E\left|X_{n}-X\right| \rightarrow 0$ as $n \rightarrow \infty$ ．
（e）If $X_{n} \rightarrow X$ almost surely，then $X_{n} \rightarrow X$ in probability．
（f）If $X_{n} \rightarrow X$ in probability，then $X_{n} \rightarrow X$ almost surely．
2．A sequence of random variables $\left\{X_{n}, n \geq 1\right\}$ is called uniformly integrable if for every $\varepsilon>0$ ， there corresponds a $\delta>0$ such that

$$
\sup _{n \geq 1} \int_{A}\left|X_{n}\right| d P<\varepsilon,
$$

whenever $P(A)<\delta$ ，and，in addition，

$$
\sup _{n \geq 1} E\left|X_{n}\right|<\infty
$$

Show that if $\left\{X_{n}, n \geq 1\right\}$ is uniformly integrable，then $\left\{S_{n} / n, n \geq 1\right\}$ is also uniformly integrable，where $S_{n}=\sum_{i=1}^{n} X_{i}$ ．（20\％）
3．Let X and Y be random variables and $\left\{X_{n}, n \geq 1\right\}$ be a sequence of random variables． Define

$$
\rho(X)=E\left(\frac{|X|}{1+|X|}\right) .
$$

Show that
（a）$\rho(X+Y) \leq \rho(X)+\rho(Y)$ ，（5\％）
（b）$\rho(\sigma X) \leq \max \{|\sigma|, 1\} \rho(X)$ ，where σ is a real number，（5\％）
（c） $\lim _{n \rightarrow \infty} \rho\left(X_{n}-X\right)=0$ if and only if $X_{n} \rightarrow X$ in probability．（15\％）
4．Let X_{1}, X_{2}, \cdots be independent identically distributed random variables with mean 0 ，variance 1，and $E X_{i}^{4}<\infty$ ．Find the limiting distribution of

$$
Z_{n}=\sqrt{n} \frac{X_{1} X_{2}+X_{3} X_{4}+\cdots+X_{2 n-1} X_{2 n}}{X_{1}^{2}+X_{2}^{2}+\cdots+X_{2 n}^{2}}
$$

