國立高雄大學九十八學年度博士班招生考試試題

科目:機率論

系所:

考試時間:100分鐘

統計學研究所 本科原始成績:100分 是否使用計算機:否

- 1. Let $\{X_n, n \ge 1\}$ and $\{Y_n, n \ge 1\}$ be sequences of random variables and X and Y be random variables. Please indicate whether the following statements are true or false. If a statement is false, explain why. (30%)
 - (a) If $X_n \to X$ in probability and $Y_n \to Y$ in probability, then $X_n + Y_n \to X + Y$ in probability.
 - (b) If $X_n \to X$ in distribution and $Y_n \to Y$ in distribution, then $X_n + Y_n \to X + Y$ in distribution.
 - (c) If $E \mid X_n X \mid \to 0$ as $n \to \infty$, then $X_n \to X$ in probability.
 - (d) If $X_n \to X$ in probability, then $E \mid X_n X \mid \to 0$ as $n \to \infty$.
 - (e) If $X_n \to X$ almost surely, then $X_n \to X$ in probability.
 - (f) If $X_n \to X$ in probability, then $X_n \to X$ almost surely.
- 2. A sequence of random variables $\{X_n, n \ge 1\}$ is called uniformly integrable if for every $\varepsilon > 0$, there corresponds a $\delta > 0$ such that

$$\sup_{n>1}\int_{A}|X_{n}|dP<\varepsilon,$$

whenever $P(A) < \delta$, and, in addition,

$$\sup_{n\geq 1} E\mid X_n\mid<\infty.$$

Show that if $\{X_n, n \ge 1\}$ is uniformly integrable, then $\{S_n/n, n \ge 1\}$ is also uniformly integrable, where $S_n = \sum_{i=1}^n X_i$. (20%)

3. Let X and Y be random variables and $\{X_n, n \ge 1\}$ be a sequence of random variables. Define

$$\rho(X) = E\left(\frac{\mid X\mid}{1+\mid X\mid}\right).$$

Show that

- (a) $\rho(X+Y) \le \rho(X) + \rho(Y)$, (5%)
- (b) $\rho(\sigma X) \le \max\{|\sigma|, 1\}\rho(X), \text{ where } \sigma \text{ is a real number, } (5\%)$
- (c) $\lim_{n\to\infty} \rho(X_n X) = 0$ if and only if $X_n \to X$ in probability. (15%)
- 4. Let X_1, X_2, \cdots be independent identically distributed random variables with mean 0, variance

1, and $EX_i^4 < \infty$. Find the limiting distribution of

$$Z_{n} = \sqrt{n} \frac{X_{1}X_{2} + X_{3}X_{4} + \dots + X_{2n-1}X_{2n}}{X_{1}^{2} + X_{2}^{2} + \dots + X_{2n}^{2}}.$$
 (25%)