科目:數理統計	系所:統計學研究所	日不は田山谷城・不
考試時間:100分鐘	本科原始成績:100分	疋 留 使 用 計 昇 機 ・ 省

- 1. Two players, A and B, alternately and independently flip a coin and the first player to obtain a head wins. Assume player A flips first.
 - (a). If the coin is fair, what is the probability that A wins? (5%)
 - (b). Suppose that P(head) = p, not necessarily 1/2. What is the probability that A wins? (5%)
 - (c). Show that for all p, 0 , <math>P(A wins) > 1/2. (5%)
- 2. Find $P(|Y \mu| \le 2\sigma)$ for the exponential random variable. Compare with the corresponding probabilistic statements by Chebyshev's theorem and the empirical rule. (10%)
- 3. A merchant stocks a certain perishable item. She knows that on any given day she will have a demand for either two, three, or four of these items with probabilities 0.1, 0.4, and 0.5, respectively. She buys the items for \$1.00 each and sells them for \$1.20 each. If any are left at the end of the day, they represent a total loss. How many items should the merchant stock in order to maximize her expected daily profit? (5%)
- 4. A member of the Pareto family of distributions (often used in economics to model income distributions) has a distribution function given by

$$F(y) = \begin{cases} 0, & y < \beta \\ 1 - \left(\frac{\beta}{y}\right)^{\alpha}, & y \ge \beta, \end{cases}$$

where $\alpha, \beta > 0$.

- (a). Find the density function. (5%)
- (b). For fixed values of β and α , find a transformation G(U) so that G(U) has a distribution function of F when U has a uniform distribution on the interval (0,1). (5%)
- (c). Given that a random sample of size 5 from a uniform distribution on the interval (0,1) yielded the values 0.0058, 0.2048, 0.7692, 0.2475 and 0.6078, use the transformation derived in (b) to give values associated with a random variable with a Pareto distribution with $\alpha = 2, \beta = 3.$ (5%)
- 5. One observation is taken on a discrete random variable X with pmf $f(x | \theta)$, where $\theta \in \{1,2,3\}$. Find the MLE of θ . (10%)

x	$f(x \mid 1)$	$f(x \mid 2)$	$f(x \mid 3)$
0	1/3	1/4	0
1	1/3	1/4	0
2	0	1/4	1/4

國立高雄大學 103 學年度研究所碩士班招生考試試題

科目:數理統計 考試時間:100 分鐘	系所:統計學研究所 本科原始成績:100 分	是否使用計算機:否

3	1/6	1/4	1/2
4	1/6	0	1/4

6. Let Y_1, Y_2, \dots, Y_n be independent, uniformly distributed random variables on the interval $[0, \theta]$.

- (a). Find the density function of $Y_{(k)}$, the *k*th-order statistic, where *k* is an integer between 1 and *n*. (5%)
- (b). Use the result from (a) to find $E(Y_{(k)})$. (5%)
- (c). Find $Var(Y_{(k)})$. (5%)
- (d). Use the result from (c) to find $E(Y_{(k)} Y_{(k-1)})$, the mean difference between two successive order statistics. Interpret the result. (5%)
- 7. Let Y_1, Y_2, \dots, Y_n denote a random sample from the density function given by

$$f(y \mid \theta) = \begin{cases} \left(\frac{1}{\theta}\right) r y^{r-1} e^{-y^r/\theta}, & \theta > 0, y > 0\\ 0, & \text{elsewhere,} \end{cases}$$

where *r* is a known positive constant.

- (a). Find a sufficient statistic for θ . (5%)
- (b). Find the maximum-likelihood estimator of θ . (5%)
- (c). Is the estimator in part (b) an MVUE for θ ? (5%)

8. Suppose that an engineer wishes to compare the number of complaints per week filed by union stewards for two different shifts at a manufacturing plant. One hundred independent observations on the number of complaints gave means x̄ = 20 for shift 1 and ȳ = 22 for shift 2. Assume that the number of complaints per week on the *i*th shift has a Poisson distribution with mean θ_i, for i = 1, 2. Use the likelihood ratio method to test H₀: θ₁ = θ₂ versus H_a: θ₁ ≠ θ₂ with α ≈ 0.01. (10%)