國立高雄大學 101 學年度研究所碩士班招生考試試題

利日・軟田休計	系所:	
村日· 数理統司	統計學研究所(統計組)	是否使用計算機:否
考試時间・100分鐘	本科原始成績:100分	

- A probability function denoted by P is a (set) function which assigns to each event A a number denoted by P(A), called the probability of A, and satisfies the following requirements:
 (R1) P(A) ≥ 0;
 - (R2) P(S) = 1, where S is the sample space;
 - (R3) For every collection of pairwise disjoint events A_i , i = 1, 2, ..., we have

$$\mathsf{P}(\bigcup_i A_i) = \sum_i \mathsf{P}(A_i).$$

Using the above requirements (R1)-(R3) to show the following properties:

- (1) $P(\phi) = 0$, where ϕ is the impossible event. [5%]
- (2) If $A_1 \subseteq A_2$, then $P(A_1) \le P(A_2)$. [5%]
- (3) $P(A_1 \cup A_2) = P(A_1) + P(A_2) P(A_1 \cap A_2)$. [5%]
- 2. Suppose that $X \sim N(\mu, \sigma^2)$. Prove that $\frac{X-\mu}{\sigma} \sim N(0,1)$. [15%]
- 3. Suppose that X is a nonnegative continuous random variable. Prove that $P(X \ge t) \le \frac{E(X)}{t}$ for any t > 0. [10%]
- 4. Suppose that we observe X_i independent, with $N(\mu, \sigma^2)$ for i = 1, 2, ..., n. Let $\overline{X} = \frac{\sum_{i=1}^n X_i}{n}$.
 - (1) Show that \overline{X} is the maximum likelihood estimator of μ . [5%]
 - (2) Show that \overline{X} is an unbiased estimator of μ . [5%]
 - (3) Show that \overline{X} is an efficient estimator of μ . [5%]
 - (4) Show that \overline{X} is a consistent estimator of μ . [5%]
 - (5) Show that \overline{X} is a sufficient statistic. [5%]
- 5. Suppose that we observe X_i independent, with $N(i\theta, 1)$ for i = 1, 2, ..., n. Find the most powerful size- α test for testing that $\theta = 2$ against $\theta = 4$. [10%]
- 6. (1) State the definition of " $\{X_n\}$ converges almost surely to X". [5%]
 - (2) State the definition of " $\{X_n\}$ converges in probability to X". [5%]
 - (3) State the definition of " $\{X_n\}$ converges in distribution to X". (5%)
 - (4) State the Weak Law of Large Numbers. **[**5% **]**
 - (4) State the Central Limit Theorem. **[**5% **]**